PRODUCT DATA

Page 1 of 2

Metal SDS Button Wafer Head

Self Drilling Screw (SDS) #08-18

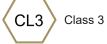
Applications

- Backpans
- Foil Sarking
- · Fascia Brackets
- · Conduit Clips

Material 1022 C1022 Hardened

Finish

Me


Th

2.5

Plate

(Purlin)

G2 G2 G550 G450 G450

Pullout Values							
etal Plate iickness	¹Mean Load	² Characteristic Load	³Working Load				
(mm)	(N)	(N)	(N)				
0.7	950	800	300				
1.1	1550	1400	550				
1.5	3650	3150	1250				
2.0	4800	4150	1650				

5450

8 Gauge Button Wafer Head

Drill Point Test							
Plate (Purlin)			Load Drill Speed		Drill Time		
	(mm)	(kg)	(RPM)	(Max. individual) Seconds	(Max. average) Seconds		
G450	1.5	18	2200	4	3		

6400

Mechanical Properties								
Torsional ¹ Mean Tensile Strength Strength		¹ Mean Shear Strength	² Characteristic Tensile Strength	² Characteristic Shear Strength				
(Nm)	(N)	(N)	(N)	(N)				
4.7	8050	4850	6750	4050				

Note: 1000N = 1kN

¹Mean Load/Strength is the average ultimate strength of samples tested.

²Characteristic Load/Strength: 95% of these screws are expected to have a strength greater than the loads shown.

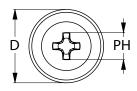
³Working Load is the governing minimum allowable load obtained by comparing relevant concrete and steel working loads. Factor of Safety (FOS=2.5 for steel, FOS=2.5 for timber and FOS=3.0 for concrete) are already included.

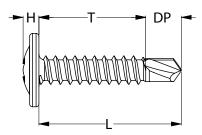
All values are obtained under laboratory conditions using DRiLLX product. Safety factors should be considered for design purposes. Actual pullout loads may differ slightly depending on certain properties of the base material.

Disclaimer: While every reasonable effort has been made to ensure that this document is correct at the time of printing, Hobson Engineering®, its agencies and employees, disclaim any and all liability to any person in respect of anything or the consequences of anything done or omitted to be done in reliance upon the whole or any part of this document.

2200

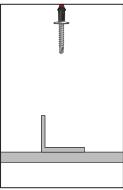
PRODUCT DATA

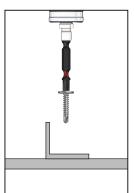




Metal SDS Button Wafer Head

Page 2 of 2


Part	QFind	Gauge	TPI	Length	Thread Length	Drill Point Length	Head Height	Head ø	Drive Size	Pack Qty
				L (mm)	T (mm)	DP (mm)	H (mm)	D (mm)	PH	
T9PM3AP0818012	Q431		18	12	7	5	2.3	10	Phillips #2	1000
T9PM3AP0818016	Q433			16	11					
T9PM3AP0818020	Q435	8		20	15					
T9PM3AP0818025	Q437			25	20					
T9PM3AP0818032	Q439			32	27					



Installation

Recommended Phillips Size #2 Drive Bit:

Part	QFind	Length		
		(mm)		
TXDIPPHS20050	B316	50		
TXDIPPHS20075	BA27	75		
TXDIPPHS20100	B326	100		
TXDIPPHS20150	B331	150		

Installation Guide

- **1.** Use a cordless screw driver set between 2,200-3,000 RPM. Fit the Phillips Drive Bit over the screw and place at the fastening position.
- **2.** Apply consistently firm pressure to the screw driver while the screw is drilling.
- 3. Care should be taken not to over-tighten the screw.

Disclaimer: While every reasonable effort has been made to ensure that this document is correct at the time of printing, Hobson Engineering®, its agencies and employees, disclaim any and all liability to any person in respect of anything or the consequences of anything done or omitted to be done in reliance upon the whole or any part of this document.

HOBSON

^{*}Installation with impact drivers not recommended.