PRODUCT DATA

XBolt® Screw Anchor Mechanical Galvanised

Page 1 of 3

XBolt® is a single unit screw type anchor that can be used in solid concrete applications. Fixing is achieved by screwing the anchor into a drilled hole in concrete. As it is screwed in, the anchor taps the hole, thus enabling it to produce a mechanical interlock with the concrete.

Applications

- · Hand rail fastening
- · Form-work support fastening
- · Mechanical, electrical and pipe bracket fastening
- · Bottom plate fixing into concrete slabs
- · Pallet racking

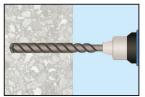
Material

Carbon Steel

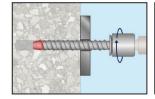
Finish

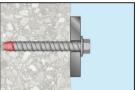
Mechanical Galvanised

Part	QFind	Dia	Length
		Ø (mm)	(mm)
MXHMSGM060030	MXH100		30
MXHMSGM060050	MXH101		50
MXHMSGM060075	MXH102	- M6	75
MXHMSGM060100	MXH103		100
MXHMSGM080050	MXH104		50
MXHMSGM080060	MXH105	M8	60
MXHMSGM080075	MXH106		75
MXHMSGM080100	MXH107		100
MXHMSGM100060	MXH108		60
MXHMSGM100075	MXH109		75
MXHMSGM100100	MXH110	M10	100
MXHMSGM100120	MXH111		120
MXHMSGM100150	MXH112		150
MXHMSGM120075	MXH113		75
MXHMSGM120100	MXH114	M12	100
MXHMSGM120150	MXH115		150
MXHMSGM160100	MXH116		100
MXHMSGM160150	MXH117	M16	150
MXHMSGM200150	MXH140		150
MXHMSGM200200	MXH142	M20	200


Features

- Suitable for medium to heavy loads
- Suitable for small anchor spacing and edge distance applications
- · Quick and easy to install
- Fully removable





Installation

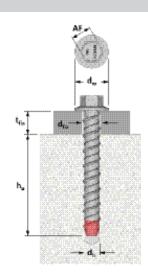
CONTRUCT

Disclaimer: while every reasonable effort has been made to ensure that this document is correct at the time of printing, Hobson Engineering®, its agencies and employees disclaim all liability in respect to anything or the consequences of anything done or omitted regarding the whole or any part of this document. HEC product marking is the manufacturing mark of Hobson Engineering. HEC is a registered trademark of Hobson Engineering.

Bolt Tension | Anti-Vibration | Product Reliability | Traceability

XBolt® Screw Anchor Mechanical Galvanised

Page 2 of 3


Installation Specification

	-						
Size	Nominal hole diameter	Minimum embedment depth	Min. hole diameter on fixture	Wrench size	Flange Head Diameter	Minimum spacing	Minimum edge distance
Ø	d _h (mm)	h _{e,min} (mm)	d _{fix} (mm)	AF (mm)	d _w (mm)	S _{min} (mm)	c _{min} (mm)
M6	6	25	8	10	13.7	40	40
M8	8	40	11	13	17.9	40	40
M10	10	50	13	15	22.5	50	50
M12	12	55	15	16	26.1	60	60
M16	16	65	20	21	31.9	70	70
M20	20	90	24	27	40.0	100	100

¹ Design Resistance is the governing minimum load resistance obtained by comparing relevant concrete and steel resistances. Capacity reduction factors of $\phi = 0.60$ for concrete and $\phi = 0.80$ for steel are already included.

² Working Load is the governing minimum allowable load obtained by comparing relevant concrete and steel working loads. Factor of safety of FOS = 2.5 for steel and FOS = 3.0 for concrete are already included.

Size	Embedment Depth	Design Tensile Resistance ¹	Working Load in Tension ²
Ø	h _e (mm)	ØN _d (kN)	N _{WLL} (kN)
	25	2.4	1.3
M6	30	2.7	1.5
IVIO	45	6.1	3.3
	60	10.8	6.0
	40	5.7	3.1
M8	60	12.2	6.8
	80	20.1	11.1
	50	8.8	4.8
M10	75	18.2	10.1
	90	24.6	13.6
	55	7.8	4.3
M12	60	11.3	6.2
IVITZ	90	24.6	13.6
	110	34.2	19.0
	65	13.3	7.3
N440	75	17.1	9.5
M16	100	28.0	15.5
	125	40.6	22.5
	90	31.9	17.7
M20	105	40.2	22.3
	115	46.0	25.6
	130	55.3	30.7

Size	Embedment Depth	Edge Distance	Design Shear Resistance ₁	Working Load in Shear ₂		
Ø	h _e (mm)	c ₁ (mm)	ØV _d (kN)	V _{WLL} (kN)		
		40	3.1	1.7		
Me	40	60	5.4	3.0		
M6	40	80	8.1	4.5		
		100	9.5	4.7		
		40	3.3	1.8		
M8	F0	60	5.8	3.2		
IVIO	50	80	8.6	4.8		
		100	11.8	6.5		
		50	4.9	2.7		
N440		80	9.1	5.1		
M10	60	100	12.4	6.9		
		120	15.9	8.8		
		60	6.6	3.6		
M12	70	80	9.7	5.3		
IVIIZ	70	120	16.7	9.3		
		150	22.6	12.6		
		70	8.7	4.8		
M16	80	100	13.9	7.7		
IVITO		150 23.9		13.3		
		200	35.4	19.6		
	445	100	15.8	8.8		
MOO		150	26.7	14.8		
M20	115	200	39.0	21.7		
		250	52.5	29.2		

Disclaimer: while every reasonable effort has been made to ensure that this document is correct at the time of printing, Hobson Engineering®, its agencies and employees disclaim all liability in respect to anything or the consequences of anything done or omitted regarding the whole or any part of this document. HEC product marking is the manufacturing mark of Hobson Engineering. HEC is a registered trademark of Hobson Engineering.

HOBSON

PRODUCT DATA

XBolt® Screw Anchor Mechanical Galvanised

Page 3 of 3

Maximum Installation Torque (Nm)

Base Material: 32 MPa Concrete							
Anchor Diameter Ø (mm)	5	6	8	10	12	16	20
Installation Torque (Nm)	10	15	45	55	80	100	140

Disclaimer: while every reasonable effort has been made to ensure that this document is correct at the time of printing, Hobson Engineering®, its agencies and employees disclaim all liability in respect to anything or the consequences of anything done or omitted regarding the whole or any part of this document. HEC product marking is the manufacturing mark of Hobson Engineering. HEC is a registered trademark of Hobson Engineering.

