PRODUCT DATA

Tygabolt® Eye Sleeve Anchor - Zinc Yellow Passivate

The Tygabolt® Eye is a pre-assembled single unit wedge-type anchor used in solid concrete applications. Fixing is achieved by controlled torguing of the eye which draws the cone section up in the sleeve, thereby expanding it outward and forcing the Tygabolt® against the sidewall of the pre-drilled hole.

Features

- Suitable for light duty loads
- Quick and easy to install
- 10mm eyelet

Installation

Disclaimer: While every reasonable effort has been made to ensure that this document is correct at the time of printing, Hobson Engineering®, its agencies and employees, disclaim any and all liability to any person in respect of anything or the consequences of anything done or omitted to be done in reliance upon the whole or any part of this document.

201130DS

hobson.com.au QUALITY FASTENERS SINCE 1935

PRODUCT DATA

Tygabolt[®] Eye Sleeve Anchor - Zinc Yellow Passivate

Installation Guide

	Tygabolt [®] Size	Thread Size	Hole	Minimum Depth	Torque Guide	Head Diameter	Eyelet Diameter	Minimum Concrete Thickness	Minimum Spacing	Minimum Edge Distance
ſ	d _h (mm)	D	d _h (mm)	h _{e min} (mm)	T _{inst} (N-m)	w (mm)	d _w (mm)	h _{min} (mm)	S _{min} (mm)	C _{min} (mm)
	8	M6	8.0	45	8	10	10	100	50	50

Basic Load Performance in 32 MPa non-cracked concrete

¹ *Design Resistance* is the governing minimum load resistance obtained by comparing relevant concrete and steel resistances. Strength reduction of $\phi = 0.60$ for concrete and $\phi = 0.80$ for steel are already included.

² *Working Load* is the governing minimum allowed load obtained by comparing relevant concrete and steel working loads. Factor of safety FOS = 2.5 for steel and FOS = 3.0 concrete are already included.

	ŀ	Anchor Body				
Size	Embedment Depth	Design Tensile Resistance ¹	Working Load in Tension ²	Design Tensile Resistance ¹	Working Load in Tension ²	
	h _e (mm)	ØN _d (kN)	N _{WLL} (kN)	ØN _d (kN)	N _{WLL} (kN)	
ø8 (M6)	40	1.7	0.8	6.4	3.2	

			Anchor Body					
	Size	Embedment Depth	Edge Distance	Design Shear Resistance ¹	Working Load in Shear ²	Design Shear Resistance ¹	Working Load in Shear ²	
		h _e (mm)	c ₁ (mm)	ØV _d (kN)	V _{wLL} (kN)	ØV _d (kN)	V _{WLL} (kN)	
	ø8 (M6)	40	50	0.9	0.4	3.2	1.6	
			60	0.9	0.4	3.2	1.6	
			80	0.9	0.4	3.2	1.6	

Note: The performance loads of the anchor body are given as a guide only. Failure of steel in the eyelet occurs first. Hence, the lower loads should be referenced in designing.

Disclaimer: While every reasonable effort has been made to ensure that this document is correct at the time of printing, Hobson Engineering®, its agencies and employees, disclaim any and all liability to any person in respect of anything or the consequences of anything done or omitted to be done in reliance upon the whole or any part of this document.

Bolt Tension | Anti-Vibration | Product Reliability | Traceability

hobson.com.au QUALITY FASTENERS SINCE 1935

HOBSON